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Synthesis and Photoinduced Electron-Transfer 
Promoted Isomerization of 
7,7-Dimet hyl- trans -bicycle[ 4.1 .O] hept-3-ene 

Summary: The title compound, 1, is highly reactive (very 
sensitive to acid, and, thermally isomerized to the cis 
isomer 2, at 110 "C); photosensitized isomerization of 1 to 
2 is effected by the excited state of 1-cyanonaphthalene. 

Sir: Since it was first suggested that small, trans-fused 
bicyclic molecules should have unique bonding,' numerous 
attempts have been made to bridge the cyclopropyl moiety 
with a short carbon-carbon chain in a trans configura- 
t i ~ n . ~ - ~  Recently, we reported a simple approach to 
tr~ns-bicyclo[4.1,.0]hept-3-ene.~ We now report the first 
synthesis of 7,7-dim~thyl-trans-bicyclo[4.1.O]hept-3-ene (1). 
In addition, we have found that 1 was rapidly isomerized 
to 7,7-dimethyl-cis-bicyclo[4.1.0]hept-3-ene (2) in the 
presence of excited state 1-cyanonaphthalene (1-CN). 

The synthesis of 1 involved a major modification of our 
earlier synthetic approach to the intriguing trans-bicy- 

(1) Gassman, P. G. J. Chem. SOC., Chem. Commun. 1967, 793. 
(2) Cope, A. C.; Hecht, J. K. J.  Am. Chem. SOC. 1963,85,1780. Corey, 

E. J.; Schulman, J. I. Tetrahedron Lett. 1968, 3655. DePuy, C. H.; 
Marshall, J. L. J.  Org. Ghem. 1968,33,3326. Mwhuk, G.; Petrowski, G.; 
Winstein, S. J. Am. Chem. SOC. 1968,90,2179. Gassman, P. G.; Williams, 
E. A.; Williams, F. J. Zbid. 1971, 93, 5199. Wiberg, K. B.; Nakahira, T. 
Zbid. 1971,93,5193. Wiberg, K. B.; Nakahira, T. Tetrahedron Lett. 1970, 
3759. Deyrup, 3. A.; Betkouski, M. F. J. Org. Chem. 1975, 40, 284. 
Wiberg, K. B.; de Meijere, A. Tetrahedron Lett. 1969,59. Deyrup, J. A.; 
Betkouski, M.; Szabo, W.; Mathew, M.; Palenik, G. J. J. Am. Chem. SOC. 
1972, 94, 2147. 
(3) (a) Gassman, P. G.; Williams, F. J.; Seter, J. J. Am. Chem. SOC. 

1968,90,6893. (b) Kirmse, W.; Hase, Ch. Angew. Chem., Znt. Ed. Engl. 
1968, 7,891. (c) Wiberg, K. B.; de Meijere, A. Tetrahedron Lett. 1969, 
519. (d) Ashe, A. J., 111. Zbid. 1969, 523. (e) Gassman, P. G.; Seter, J.; 
Williams, F. J. J.  Am. Chem. SOC. 1971,93, 1673. (f) Gassman, P. G.; 
Williams, F. J. Ibid. 1971,93,2704. (g) Wiberg, K. B. Angew. Chem., Int. 
Ed. End.  1972,11,332. (h) Pirkle, W. H.: Lunsford. W. B. J. Am. Chem. 
SOC. 1972, 94, 7201. 

(4) Paukstelis. J. V.: Kao, J.-L. J.  Am. Chem. SOC. 1972, 94, 4783. 
Paukstelis, J. V.; Kao, J.-L. Tetrahedron Lett. 1970, 3691. 

(5) A second derivative of trans-bicyclo[4,l.O]heptane has been re- 
ported as a nonisolable intermediate. See: Casadevall, E.; Pouet, Y. 
Tetrahedron 1978,34,!1921. For an example of an unsuccessful attempt 
to prepare a trans-bicyclo[4.1.0]hept-3-ene derivative by an acyloin con- 
densation, see: Delbaere, C. U. L.; Whitham, G. H. J. Chem. SOC., Perkin 
Trans. 1 1974,879. See also: Blancou, H.; Casadevall, E. Tetrahedron 
1976, 32, 2907. For an additional unsuccessful approach see ref 3g. 
(6) Gassman, P. G.; Bonser, S. M. J.  Am. Chem. SOC. 1983,105,667. 

See also: Gassman, P. G.; Bonser, S. M. Tetrahedron Lett. 1983,24,3431. 

0022-3263/86/1951-2397$01.50/0 

clo[4.1.O]heptyl skeleton. As shown in Scheme I, Fisher 
esterification of commercial trans-p-hydromuconic acid (3)' 
gave an 85% yield of dimethyl trans-hex-3-ene-1,Sdioate 
(4).* Subsequent reduction of 4 with lithium aluminum 
hydride produced the diol, 5, in 82% yield.g Treatment 
of 5 with carbon tetrabromide and triphenylphosphine 
gave 69 in 85% yield. Phase-transfer-catalyzed addition 
of dibromocarbene to 6 using bromoform, sodium hy- 
droxide, and triethylbenzylammonium chloride (as 
phase-transfer agent)1° yielded 85% of the tetrabromide 
7.l' Utilizing high dilution techniques,'7 was allowed to 
react with sodium sulfide to give 68% of 8,8-dibromo-4- 
thia-trans-bicyclo[5.l.O]octane (8). When 8 was allowed 
to react with a tenfold excess of lithium dimethylcuprate,12 
a 97% yield of a 4753 mixture of 9 and its mono- 
methylated counterpart, 8-methyl-4-thia-trans-bicyclo- 
[5.1.0]octane, was obtained. The two cyclic sulfides were 
separated by preparative MPLC to give a 36% yield of 9. 
Conversion of the sulfide to an a-chlorosulfone was ac- 
complished in a two-step process involving treatment of 
9 with N-chlorosuccinimide to a-chlorinate and then with 
m-chloroperbenzoic acid to oxidize the sulfide linkage to 
a sulfone. The mixture of stereoisomers represented by 
10 was obtained in 90% yield. When 10 was treated with 
5 equiv of potassium tert-butoxide in dimethyl sulfoxide, 
1 was produced in 45% yield13 for an overall yield of 5.0%. 

The structure of 1 was established on the basis of 
spectral data and by its facile conversion to 7,7-dimethyl- 
cis-bicyclo[4.1.0]hept-3-ene (2) both thermally and pho- 
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tochemically. The 'H NMR of 1 in ben2ene-d~ showed: 
6 5.96 (s, 2 H), 2.55 (dd, 2 H), 2.00 (m, 2 H), 1.10 (s,6 H), 
and -0.50 (m, 2 H); 13C NMR (c6D6) 6 131.61 (d), 32.49 
(s), 31.76 It), 30.99 (d), and 23.25 (9). The upfield position 
of the two bridgehead protons at 6 = -0.50 was consistent 
with the similar position found for these protons in the 
nonmethylated parent hydrocarbon.6 Thermally, 1 was 
converted into 2 at 110 "C in 93% yield.14 This thermal 
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rearrangement product was identical in all respects with 
an authentic sample of 2 prepared by the addition of 1 
equiv of dibromocarbene to l,Ccyclohexadiene, followed 
by replacement of the bromines by methyl groups through 
the use of lithium dimethylcuprate.12 At  110 O C  the 
thermal rearrangement of 1 to 2 occurred 8 times faster 
than the rearrangement of the parent hydrocarbon. 

In view of our interest in the electrochemical15 and 
photoinduced electron-transfer-promoted reactions16 of 
highly strained polycyclic molecules, we examined the 
oxidation of 1 under single-sweep cyclic voltammetry 
conditions which showed that 1 had an Ellz vs. a saturated 
calomel electrode of 1.34 V." This value was sufficiently 
low that electron transfer from 1 to a variety of excited 
state photosensitizers was anticipated. Irradiation of a 
solution of 1 in methanol-d, containing 5 mol % of 1-CN 
as photosensitizer for 3.5 h with a Rayonet photochemical 
reactor containing 16 300-nm, 21-W lamps gave a 78% 
yield of 2. Since this photochemistry was carried out in 
Pyrex glassware, only the 1-CN was excited. We believe 
that a tight cation radical-anion radical pair, which could 
be represented by 11 is formed.18 Isomerization of the 
cation radical of 1 (11) to the cation radical of 2, followed 
by back electron transfer from the anion radical of 1-CN 
would then produce 2. 

Lastly, we indicate that 1 is extremely acid-sensitive. It 
was rapidly isomerized to 12 in the presence of trace 
amounts of acid. We are continuing to explore the chem- 

(14) In addition to  93% of 2, the formation of ca. 7% of 12 was ob- 
served. In the absence of Dabco, the percentage of 12 varied, ranging up 
to 30% of the reaction mixture. This implies that 12 was formed in an 
acid-catalyzed process (vide post). 
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cannot rule out the possibility that the isomerization of 1 to 2, under the 
described photochemical conditions, involves a cation radical derived 
from removal of an electron from the Cl-C7 bond. Also, on the basis of 
presently available data, we are unable to determine whether the pho- 
toinduced isomerization of 1 to 2 is a cation radical-chain process. 
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istry of 1 and of related derivatives of trans-fused bicyclic 
alkanes. 
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Synthetic Studies on the Ingenane Diterpenes. 
Inter- and Intramolecular [6 + 41 Tropone-Diene 
Cycloaddition Reactionst 

Summary: Thermally allowed inter- and intramolecular 
[6 + 41 tropone-diene cycloadditions have been employed 
for the construction of intermediates in the synthesis of 
the cocarcinogenic diterpene ingenol. 

Sir: The ingenanes represent a structurally unique class 
of highly oxygenated tetracyclic diterpene esters which 
exhibit potent tumor-promoting properties.' Ingenol(1) 
serves as the parent diterpene nucleus from which many 
of these biologically active esters are derived. 

1 

'Portions of this work were presented a t  the  190th American 
Chemical Society National Meeting in Chicago, IL, September 10, 
1985, Abstract ORGNlOP. 
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